Geometrical significance of the löwner-heinz inequality

It is proven that the Lowner-Heinz inequality ||At Bt|| ≤ ||AB||t, valid for all positive invertible operators A, B on the Hubert space H and t ε [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C*-alge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andruchow, E., Corach, G., Stojanoff, D.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v128_n4_p1031_Andruchow
Aporte de:
Descripción
Sumario:It is proven that the Lowner-Heinz inequality ||At Bt|| ≤ ||AB||t, valid for all positive invertible operators A, B on the Hubert space H and t ε [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C*-algebra. In particular, the Löwner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space. © 2000 American Mathematical Society.