A counterexample for H∞ approximable functions
Let be the unit disk. We show that for some relatively closed set F ⊂ there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray. © 2000 American Mathe...
Guardado en:
Autor principal: | Suárez, D. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v128_n10_p3003_Suarez |
Aporte de: |
Ejemplares similares
-
A counterexample for H∞ approximable functions
Publicado: (2000) -
Uniform algebras /
por: Gamelin, Theodore W.
Publicado: (2005) -
Cluster values of holomorphic functions of bounded type
por: Aron, R.M., et al. -
Approximate reconstruction of bandlimited functions for the integrate and fire sampler
por: Romero, José Luis
Publicado: (2012) -
Approximate reconstruction of bandlimited functions for the integrate and fire sampler
por: Feichtinger, H.G., et al.