Löwner's theorem and the differential geometry of the space of positive operators
Let A be a untel C*-algebra and G+ the space of all positive invertible elements of A. In this largely expository paper we collect several geometrical features of G+ which relate its structure with that of Riemannian manifolds with non positive curvature. The main result of the paper is the equivale...
Guardado en:
Autores principales: | Andruchow, E., Corach, G., Stojanoff, D. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00015504_v49_n2_p70_Andruchow |
Aporte de: |
Ejemplares similares
-
Löwner's theorem and the differential geometry of the space of positive operators
por: Andruchow, Esteban, et al.
Publicado: (1998) -
Some operator inequalities for unitarily invariant norms
por: Cano, Cristina, et al.
Publicado: (2005) -
Local Lidskii's theorems for unitarily invariant norms
por: Massey, Pedro Gustavo, et al.
Publicado: (2018) -
Differential and metrical structure of positive operators
por: Corach, G., et al. -
Index of Hadamard multiplication by positive matrices II
por: Corach, Gustavo, et al.
Publicado: (2001)