Control cuántico coherente mediante transiciones de Landau-Zener

En este trabajo proponemos un método para controlar de una manera extremadamente simple el estado de un sistema cuántico. La estrategia de control está basada en el modelo de Landau-Zener y consiste esencialmente en emplear los cruces evitados para alcanzar diferentes niveles de energía y en recorre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Murgida, Gustavo Ezequiel
Otros Autores: Tamborenea, Pablo I.
Formato: Tesis doctoral publishedVersion
Lenguaje:Español
Publicado: Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales 2010
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12110/tesis_n4692_Murgida
Aporte de:
Descripción
Sumario:En este trabajo proponemos un método para controlar de una manera extremadamente simple el estado de un sistema cuántico. La estrategia de control está basada en el modelo de Landau-Zener y consiste esencialmente en emplear los cruces evitados para alcanzar diferentes niveles de energía y en recorrer lentamente las curvas adiabáticas del espectro,hasta arribar al estado deseado. La simpleza del método proviene de suponer que el sistema se comporta localmente, cerca de cada anticruce, como un sistema de dos niveles de Landau-Zener. Sin embargo, mediante simulaciones numéricas en diferentes sistemas realistas comprobamos que nuestra estrategia de control posee una eficiencia sorprendente. Las primeras aplicaciones numéricas fueron realizadas en un sistema de dos puntos cuánticos acoplados con dos electrones intearactuantes en su interior. Empleando un campo eléctrico externo como parámetro de control y partiendo del estado fundamental a campo E /0, logramos localizar ambos electrones en un mismo punto cuántico, construir estados entrelazados, recorrer en forma eficiente caminos complejos en el espectro para conectar niveles de energía lejanos y construir superposiciones coherentes de varios autoestados. El método tambié fue aplicado en otro sistema muy diferente al anterior, la molécula de LiCN. Nuevamente pudimos controlar exitosamente el estado del sistema y además encontramos una solución al problema de isomerizar la molécula. Para ello también empleamos como parámetro de control un campo eléctrico externo. De esta manera mostramos que nuestro método puede ser aplicado eficientemente en diferentes sistemas complejos y creemos que posee un importante potencial en el campo del control coherente.