Sylvester's double sums: The general case
In 1853 Sylvester introduced a family of double-sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members o...
Guardado en:
Autores principales: | D'Andrea, C., Hong, H., Krick, T., Szanto, A. |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1164_DAndrea |
Aporte de: |
Ejemplares similares
-
Sylvester's double sums: The general case
por: D'Andrea, C., et al.
Publicado: (2009) -
Sylvester's double sums: The general case
por: D'Andrea, C., et al. -
Sylvester's double sums: The general case
por: D'Andrea, Carlos Antonio, et al.
Publicado: (2009) -
An elementary proof of Sylvester's double sums for subresultants
por: D'Andrea, C., et al.
Publicado: (2007) -
An elementary proof of Sylvester's double sums for subresultants
por: D'Andrea, C., et al.