Countable contraction mappings in metric spaces: Invariant sets and measure
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i(x) = r ix + bi on X = ℝd, we prove a converse of the classic resu...
Guardado en:
Publicado: |
2014
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18951074_v12_n4_p593_Barrozo http://hdl.handle.net/20.500.12110/paper_18951074_v12_n4_p593_Barrozo |
Aporte de: |
Ejemplares similares
-
Countable contraction mappings in metric spaces: Invariant sets and measure
por: Barrozo, M.F., et al. -
Invariance of a Shift-Invariant Space in Several Variables
por: Anastasio, Magalí, et al.
Publicado: (2011) -
Invariance of a Shift-Invariant Space in Several Variables
por: Anastasio, M., et al. -
Extra invariance of shift-invariant spaces on LCA groups
por: Anastasio, Magalí, et al.
Publicado: (2010) -
Extra invariance of shift-invariant spaces on LCA groups
por: Anastasio, M., et al.
Publicado: (2010)