Countable contraction mappings in metric spaces: Invariant sets and measure

We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i(x) = r ix + bi on X = ℝd, we prove a converse of the classic resu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18951074_v12_n4_p593_Barrozo
http://hdl.handle.net/20.500.12110/paper_18951074_v12_n4_p593_Barrozo
Aporte de:

Ejemplares similares