Chemical properties of long gamma-ray bursts progenitors in cosmological simulations
In this work, we investigate the chemical dependence of the progenitors of long gamma-ray bursts. Using hydrodynamical cosmological simulations consistent with the concordance Λ-CDM model which include star formation, chemical enrichment and supernova feedback in a self-consistent way, and assuming...
Guardado en:
Publicado: |
2012
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18248039_v2012-May_n_p_Pellizza http://hdl.handle.net/20.500.12110/paper_18248039_v2012-May_n_p_Pellizza |
Aporte de: |
Sumario: | In this work, we investigate the chemical dependence of the progenitors of long gamma-ray bursts. Using hydrodynamical cosmological simulations consistent with the concordance Λ-CDM model which include star formation, chemical enrichment and supernova feedback in a self-consistent way, and assuming that these bursts are produced by a subset of massive stars (possibly with distinct chemical properties), we compute the LGRB rate at different redshifts. Introducing prescriptions for their peak isotropic luminosity function and intrinsic spectrum, and using a Monte Carlo scheme to model their detectability by different high-energy observatories, we compute the distributions of the burst observables (peak flux, spectral peak energy) and compare them to actual data. Our preliminary results show that a possible chemical dependence for LGRBs progenitors cannot be ruled out, but it might be more complex than the usually assumed metallicity cut-off. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. |
---|