Cyclic homology, tight crossed products, and small stabilizations
In [1] we associated an algebra (Formula presented.) to every bornological algebra (Formula presented.) and an ideal (Formula presented.) to every symmetric ideal (Formula presented.). We showed that (Formula presented.) has K-theoretical properties which are similar to those of the usual stabilizat...
Guardado en:
Autor principal: | Cortiñas, Guillermo Horacio |
---|---|
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16616952_v8_n4_p1191_Cortinas http://hdl.handle.net/20.500.12110/paper_16616952_v8_n4_p1191_Cortinas |
Aporte de: |
Ejemplares similares
-
Cyclic homology, tight crossed products, and small stabilizations
por: Cortiñas, G. -
Homotopy invariance through small stabilizations
por: Cortiñas, Guillermo Horacio
Publicado: (2015) -
Homotopy invariance through small stabilizations
por: Abadie, B., et al. -
Cyclic homology of Hopf crossed products
por: Carboni, Graciela, et al.
Publicado: (2010) -
Cyclic homology of Hopf crossed products
por: Carboni, G., et al.
Publicado: (2010)