Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation
We investigate the memory effects present in the asymptotic dynamics of a classical harmonic oscillator governed by a generalized Langevin equation. Using Laplace analysis together with Tauberian theorems we derive asymptotic expressions for the mean values, variances, and velocity autocorrelation f...
Guardado en:
Autores principales: | Despósito, Marcelo Arnaldo, Viñales, Angel Daniel |
---|---|
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v77_n3_p_Desposito http://hdl.handle.net/20.500.12110/paper_15393755_v77_n3_p_Desposito |
Aporte de: |
Ejemplares similares
-
Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation
por: Despósito, M.A., et al. -
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
por: Viñales, Angel Daniel, et al.
Publicado: (2009) -
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
por: Viñales, A.D., et al. -
Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle
por: Viñales, Angel Daniel, et al.
Publicado: (2006) -
Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle
por: Viñales, A.D., et al.