An extension of a theorem of V. Šverák to variable exponent spaces
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of th...
Guardado en:
Publicado: |
2015
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini |
Aporte de: |
Ejemplares similares
-
An extension of a theorem of V. Šverák to variable exponent spaces
por: Baroncini, C., et al. -
A shape-derivative approach to some pde model in image restoration
Publicado: (2018) -
A shape-derivative approach to some pde model in image restoration
por: Baroncini, C., et al. -
Time variation of fundamental constants in nonstandard cosmological models
por: Mosquera, Mercedes Elisa, et al.
Publicado: (2017) -
A shape optimization problem for steklov eigenvalues in oscillating domains
Publicado: (2015)