The Neumann problem for nonlocal nonlinear diffusion equations
We study nonlocal diffusion models of the form (γ(u))_t (t, x) = \\int_{\\Omega} J(x-y)(u(t, y) - u(t, x))\\, dy. Here Ω is a bounded smooth domain andγ is a maximal monotone graph in {{R}}2. This is a nonlocal diffusion problem analogous with the usual Laplacian with Neumann boundary conditions. We...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14243199_v8_n1_p189_Andreu http://hdl.handle.net/20.500.12110/paper_14243199_v8_n1_p189_Andreu |
Aporte de: |
Ejemplares similares
-
The Neumann problem for nonlocal nonlinear diffusion equations
por: Andreu, F., et al. -
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
por: Rossi, Julio Daniel
Publicado: (2007) -
A nonlocal nonlinear diffusion equation with blowing up boundary conditions
por: Rossi, Julio Daniel
Publicado: (2008) -
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
por: Bogoya, M., et al.
Publicado: (2007) -
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
por: Bogoya, M., et al.