Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes
For a discrete group G, we define the notion of G-II-algebra whose model is given by the graded group (πn(K))n≥1 corresponding to a topological space K on which G acts. This notion is a natural extension of the notion of II-algebra ([8]) and we use it to construct a spectral sequence relied to the I...
Guardado en:
Publicado: |
1998
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v5_n4_p565_Fieux http://hdl.handle.net/20.500.12110/paper_13701444_v5_n4_p565_Fieux |
Aporte de: |
id |
paper:paper_13701444_v5_n4_p565_Fieux |
---|---|
record_format |
dspace |
spelling |
paper:paper_13701444_v5_n4_p565_Fieux2023-06-08T16:12:14Z Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes For a discrete group G, we define the notion of G-II-algebra whose model is given by the graded group (πn(K))n≥1 corresponding to a topological space K on which G acts. This notion is a natural extension of the notion of II-algebra ([8]) and we use it to construct a spectral sequence relied to the II-algebra IImapGpt(X, Y), associated to the space of equivariant pointed continuous applications between two pointed G-CW-complexes X and Y. In particular, this spectral sequence converges to π*mapGpt(X, Y) when X is G-free and Y has only a finite number of non vanishing homotopy groups. We give an example obtained from the universal covering of BG. 1998 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v5_n4_p565_Fieux http://hdl.handle.net/20.500.12110/paper_13701444_v5_n4_p565_Fieux |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
For a discrete group G, we define the notion of G-II-algebra whose model is given by the graded group (πn(K))n≥1 corresponding to a topological space K on which G acts. This notion is a natural extension of the notion of II-algebra ([8]) and we use it to construct a spectral sequence relied to the II-algebra IImapGpt(X, Y), associated to the space of equivariant pointed continuous applications between two pointed G-CW-complexes X and Y. In particular, this spectral sequence converges to π*mapGpt(X, Y) when X is G-free and Y has only a finite number of non vanishing homotopy groups. We give an example obtained from the universal covering of BG. |
title |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
spellingShingle |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
title_short |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
title_full |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
title_fullStr |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
title_full_unstemmed |
Une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
title_sort |
une suite spectrale pour les groupes d'homotopie des espaces d'applications équivariantes |
publishDate |
1998 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v5_n4_p565_Fieux http://hdl.handle.net/20.500.12110/paper_13701444_v5_n4_p565_Fieux |
_version_ |
1768545062863503360 |