Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vorte...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10706631_v24_n2_p_Lord http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord |
Aporte de: |
Sumario: | We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics. |
---|