Asymptotic behaviour for a semilinear nonlocal equation

We study the semilinear nonlocal equation u t =Ju-u-u p in the whole. First, we prove the global well-posedness for initial conditions. Next, we obtain the long time behaviour of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J: finite time e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2007
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09217134_v52_n1-2_p143_Pazoto
http://hdl.handle.net/20.500.12110/paper_09217134_v52_n1-2_p143_Pazoto
Aporte de:
Descripción
Sumario:We study the semilinear nonlocal equation u t =Ju-u-u p in the whole. First, we prove the global well-posedness for initial conditions. Next, we obtain the long time behaviour of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J: finite time extinction for p<1, faster than exponential decay for the linear case p=1, a weakly nonlinear behaviour for p large enough and a decay governed by the nonlinear term when p is greater than one but not so large. © 2007 - IOS Press and the authors. All rights reserved.