Methylene blue incorporation into alkanethiol SAMs on Au(111): Effect of hydrocarbon chain ordering
A detailed polarization modulation infrared reflection absorption spectroscopy, scanning tunneling microscopy, and electrochemical study on methylene blue (MB) incorporation into alkanethiolate self-assembled monolayers (SAMs) on Au(111) is reported. Results show that the amount of MB incorporated i...
Guardado en:
Autores principales: | , , , |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n11_p8226_Grumelli http://hdl.handle.net/20.500.12110/paper_07437463_v26_n11_p8226_Grumelli |
Aporte de: |
Sumario: | A detailed polarization modulation infrared reflection absorption spectroscopy, scanning tunneling microscopy, and electrochemical study on methylene blue (MB) incorporation into alkanethiolate self-assembled monolayers (SAMs) on Au(111) is reported. Results show that the amount of MB incorporated in the SAMs reaches a maximum for intermediate hydrocarbon chain lengths (C10-C12). Well-ordered SAMs of long alkanethiols (C > C12) hinder the incorporation of the MB molecules into the SAM. On the other hand, less ordered SAMs of short alkanethiols (C ≤ C6) are not efficient to retain the MB incorporated through the defects. For C12 the amount of incorporated MB increases as the SAM disorder is increased. This information is essential to the design of efficient thiol-based Au vectors for transport and delivery of molecules as well as thiol-based Au devices for molecular sensing. © 2010 American Chemical Society. |
---|