Truncating expansions in bi-orthogonal bases: What is preserved?
In this work, we test the survival of topological information of an attractor under the truncations of a bi-orthogonal decomposition. We generate synthetic patterns which evolve dynamically in a desired way, and investigate the number of modes which should be kept in a truncation in order to be able...
Guardado en:
Publicado: |
1997
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03759601_v236_n4_p301_Krmpotic http://hdl.handle.net/20.500.12110/paper_03759601_v236_n4_p301_Krmpotic |
Aporte de: |
Ejemplares similares
-
Truncating expansions in bi-orthogonal bases: What is preserved?
Publicado: (1997) -
Truncating expansions in bi-orthogonal bases: What is preserved?
por: Krmpotić, D., et al. -
Time-frequency shift invariance of Gabor spaces generated by integer lattices
Publicado: (2019) -
Time-frequency shift invariance of Gabor spaces generated by integer lattices
por: Cabrelli, C., et al. -
Quaternionic (super) twistors extensions and general superspaces
por: Cirilo, Diego Julio
Publicado: (2017)