Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term
In this paper we study the blow-up problem for a non-local diffusion equation with a reaction term, ut (x, t) = ∫Ω J (x - y) (u (y, t) - u (x, t)) d y + up (x, t) . We prove that non-negative and non-trivial solutions blow up in finite time if and only if p > 1. Moreover, we find that the blo...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v70_n4_p1629_PerezLlanos http://hdl.handle.net/20.500.12110/paper_0362546X_v70_n4_p1629_PerezLlanos |
Aporte de: |
Ejemplares similares
-
Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term
por: Pérez-Llanos, M., et al. -
Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary
Publicado: (2005) -
Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary
por: Brändle, C., et al. -
The blow-up profile for a fast diffusion equation with a nonlinear boundary condition
Publicado: (2003) -
The blow-up profile for a fast diffusion equation with a nonlinear boundary condition
por: Ferreira, R., et al.