Estimates of the best Sobolev constant of the embedding of BV (Ω) into L1(∂Ω) and related shape optimization problems
In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality λ1(Ω) ∥u∥L1(∂Ω) ≤ ∥u∥ W1,1(Ω) that are independent of Ω. These estimates generalize those of [J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace constant with critical exponent and applic...
Guardado en:
Publicado: |
2008
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v69_n8_p2479_Saintier http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n8_p2479_Saintier |
Aporte de: |
Ejemplares similares
-
Estimates of the best Sobolev constant of the embedding of BV (Ω) into L1(∂Ω) and related shape optimization problems
por: Saintier, N. -
Estimates for the Sobolev trace constant with critical exponent and applications
por: Fernandez Bonder, Julian
Publicado: (2008) -
Estimates for the Sobolev trace constant with critical exponent and applications
por: Fernández Bonder, J., et al. -
An optimization problem related to the best Sobolev trace constant in thin domains
por: Rossi, Julio Daniel
Publicado: (2008) -
An optimization problem related to the best Sobolev trace constant in thin domains
por: Bonder, J.F., et al.