Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets
We relate different properties of nonseparable quincunx multiwavelet systems, such as polynomial approximation order, orthonormality and balancing, to conditions on the matrix filters. We give mathematical proofs for these relationships. The results obtained are necessary conditions on the filterban...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5807LNCS_n_p54_Ruedin http://hdl.handle.net/20.500.12110/paper_03029743_v5807LNCS_n_p54_Ruedin |
Aporte de: |
id |
paper:paper_03029743_v5807LNCS_n_p54_Ruedin |
---|---|
record_format |
dspace |
spelling |
paper:paper_03029743_v5807LNCS_n_p54_Ruedin2023-06-08T15:28:33Z Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets Ruedin, Ana María Clara Balancing Multiwavelets Nonseparable Polynomial reproduction Quincunx Mathematical proof Matrix filters Multi-wavelets Multiwavelet Nonseparable Orthogonality Computer vision Signal reconstruction Polynomial approximation We relate different properties of nonseparable quincunx multiwavelet systems, such as polynomial approximation order, orthonormality and balancing, to conditions on the matrix filters. We give mathematical proofs for these relationships. The results obtained are necessary conditions on the filterbank. This simplifies the design of such systems. © 2009 Springer Berlin Heidelberg. Fil:Ruedin, A.M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5807LNCS_n_p54_Ruedin http://hdl.handle.net/20.500.12110/paper_03029743_v5807LNCS_n_p54_Ruedin |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Balancing Multiwavelets Nonseparable Polynomial reproduction Quincunx Mathematical proof Matrix filters Multi-wavelets Multiwavelet Nonseparable Orthogonality Computer vision Signal reconstruction Polynomial approximation |
spellingShingle |
Balancing Multiwavelets Nonseparable Polynomial reproduction Quincunx Mathematical proof Matrix filters Multi-wavelets Multiwavelet Nonseparable Orthogonality Computer vision Signal reconstruction Polynomial approximation Ruedin, Ana María Clara Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
topic_facet |
Balancing Multiwavelets Nonseparable Polynomial reproduction Quincunx Mathematical proof Matrix filters Multi-wavelets Multiwavelet Nonseparable Orthogonality Computer vision Signal reconstruction Polynomial approximation |
description |
We relate different properties of nonseparable quincunx multiwavelet systems, such as polynomial approximation order, orthonormality and balancing, to conditions on the matrix filters. We give mathematical proofs for these relationships. The results obtained are necessary conditions on the filterbank. This simplifies the design of such systems. © 2009 Springer Berlin Heidelberg. |
author |
Ruedin, Ana María Clara |
author_facet |
Ruedin, Ana María Clara |
author_sort |
Ruedin, Ana María Clara |
title |
Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
title_short |
Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
title_full |
Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
title_fullStr |
Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
title_full_unstemmed |
Theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
title_sort |
theorems relating polynomial approximation, orthogonality and balancing conditions for the design of nonseparable bidimensional multiwavelets |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5807LNCS_n_p54_Ruedin http://hdl.handle.net/20.500.12110/paper_03029743_v5807LNCS_n_p54_Ruedin |
work_keys_str_mv |
AT ruedinanamariaclara theoremsrelatingpolynomialapproximationorthogonalityandbalancingconditionsforthedesignofnonseparablebidimensionalmultiwavelets |
_version_ |
1768545374906089472 |