Classification of melanoma images with fisher vectors and deep learning

The present work corresponds to the application of techniques of data mining and deep training of neural networks (deep learning) with the objective of classifying images of moles in ‘Melanomas’ or ‘No Melanomas’. For this purpose an ensemble of three classifiers will be created. The first correspon...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2019
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v11401LNCS_n_p732_Liberman
http://hdl.handle.net/20.500.12110/paper_03029743_v11401LNCS_n_p732_Liberman
Aporte de:
Descripción
Sumario:The present work corresponds to the application of techniques of data mining and deep training of neural networks (deep learning) with the objective of classifying images of moles in ‘Melanomas’ or ‘No Melanomas’. For this purpose an ensemble of three classifiers will be created. The first corresponds to a convolutional network VGG-16, the other two correspond to two hybrid models. Each hybrid model is composed of a VGG-16 input network and a Support Vector Machine (SVM) as a classifier. These models will be trained with Fisher Vectors (FVs) calculated with the descriptors that are the output of the convolutional network aforementioned. The difference between these two last classifiers lies in the fact that one has segmented images as input of the VGG-16 network, while the other uses non-segmented images. Segmentation is done by means of an U-NET network. Finally, we will analyze the performance of the hybrid models: The VGG-16 network and the ensemble that incorporates the three classifiers. © Springer Nature Switzerland AG 2019.