Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales

The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cristiano, Piedad María, Campanello, Paula Inés, Bucci, Sandra Janet, Rodriguez, Sabrina Andrea, Scholz, Fabián Gustavo, Madanes, Nora, Goldstein, Guillermo Hernan
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v203_n_p96_Cristiano
http://hdl.handle.net/20.500.12110/paper_01681923_v203_n_p96_Cristiano
Aporte de:
id paper:paper_01681923_v203_n_p96_Cristiano
record_format dspace
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Canopy conductance
Climatic determinants of transpiration
Remote sensing
Sap flow
Water consumption
canopy reflectance
comparative study
evapotranspiration
hydrological cycle
hydrology
land use change
MODIS
remote sensing
sap flow
spatiotemporal analysis
stomatal conductance
subtropical region
tree planting
Argentina
Araucaria angustifolia
Eucalyptus grandis
Pinus taeda
spellingShingle Canopy conductance
Climatic determinants of transpiration
Remote sensing
Sap flow
Water consumption
canopy reflectance
comparative study
evapotranspiration
hydrological cycle
hydrology
land use change
MODIS
remote sensing
sap flow
spatiotemporal analysis
stomatal conductance
subtropical region
tree planting
Argentina
Araucaria angustifolia
Eucalyptus grandis
Pinus taeda
Cristiano, Piedad María
Campanello, Paula Inés
Bucci, Sandra Janet
Rodriguez, Sabrina Andrea
Scholz, Fabián Gustavo
Madanes, Nora
Goldstein, Guillermo Hernan
Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
topic_facet Canopy conductance
Climatic determinants of transpiration
Remote sensing
Sap flow
Water consumption
canopy reflectance
comparative study
evapotranspiration
hydrological cycle
hydrology
land use change
MODIS
remote sensing
sap flow
spatiotemporal analysis
stomatal conductance
subtropical region
tree planting
Argentina
Araucaria angustifolia
Eucalyptus grandis
Pinus taeda
description The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology. © 2015 Elsevier B.V.
author Cristiano, Piedad María
Campanello, Paula Inés
Bucci, Sandra Janet
Rodriguez, Sabrina Andrea
Scholz, Fabián Gustavo
Madanes, Nora
Goldstein, Guillermo Hernan
author_facet Cristiano, Piedad María
Campanello, Paula Inés
Bucci, Sandra Janet
Rodriguez, Sabrina Andrea
Scholz, Fabián Gustavo
Madanes, Nora
Goldstein, Guillermo Hernan
author_sort Cristiano, Piedad María
title Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_short Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_full Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_fullStr Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_full_unstemmed Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales
title_sort evapotranspiration of subtropical forests and tree plantations: a comparative analysis at different temporal and spatial scales
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v203_n_p96_Cristiano
http://hdl.handle.net/20.500.12110/paper_01681923_v203_n_p96_Cristiano
work_keys_str_mv AT cristianopiedadmaria evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT campanellopaulaines evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT buccisandrajanet evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT rodriguezsabrinaandrea evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT scholzfabiangustavo evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT madanesnora evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
AT goldsteinguillermohernan evapotranspirationofsubtropicalforestsandtreeplantationsacomparativeanalysisatdifferenttemporalandspatialscales
_version_ 1768546344338718720
spelling paper:paper_01681923_v203_n_p96_Cristiano2023-06-08T15:17:43Z Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales Cristiano, Piedad María Campanello, Paula Inés Bucci, Sandra Janet Rodriguez, Sabrina Andrea Scholz, Fabián Gustavo Madanes, Nora Goldstein, Guillermo Hernan Canopy conductance Climatic determinants of transpiration Remote sensing Sap flow Water consumption canopy reflectance comparative study evapotranspiration hydrological cycle hydrology land use change MODIS remote sensing sap flow spatiotemporal analysis stomatal conductance subtropical region tree planting Argentina Araucaria angustifolia Eucalyptus grandis Pinus taeda The area of tree plantations in the humid subtropical region of Northern Argentina has recently increased five folds. However, the impact of this land use change on evapotranspiration (ET), one of the main components of the hydrologic cycle, has not been evaluated. We studied the ET at tree and ecosystem levels for native forests and three tree plantations (Pinus taeda, Araucaria angustifolia and Eucalyptus grandis). Water consumption of individual trees was estimated using sap flow measurements. Ecosystem ET was characterized using both remote sensing derived data products (ETMODIS) for 2000-2011 and scaling up from tree sap flow measurements to stand level. Canopy conductance (gc) was estimated using both sap flow measurements and ETMODIS data. At individual level, transpiration was positively related to the size of the tree, and the relationship was well described by an exponential function when all species (both native and cultivated trees) were included in the analysis. The average annual leaf area index was similar between native forest and tree plantations. The ET estimates obtained from scaling up sap flow measurements and from ETMODIS were relatively similar in most cases and differed by 4-34%, depending on the ecosystem. The tree plantations, regardless of density or age, did not show higher ETMODIS than native forests. The ET ranged from 1161 to 1389mm per year across native forests and tree plantations according to remote sensing, representing 58-69% of the annual precipitation. Furthermore, the good agreement between ET estimates, with the exception of E. grandis, obtained using sap flow and remote sensing provide a good basis for predicting the effects of land conversion from native forest to most non-native tree plantations on regional ET. Monthly ETMODIS increased with increasing monthly air saturation deficit (ASD) up to 0.8kPa, value at which ETMODIS did not increase further probably due to stomatal control and low values of gc. Different negative exponential relationships between gc and ASD were obtained when gc was calculated by scaling up daily tree sap flow to ecosystem level. Canopy conductance (estimated by remote sensing) declined in a similar negative exponential fashion with increasing ASD, and no differences were observed across ecosystem types. The result of increasing the time step, from daily to monthly, and the spatial scale from individual tree to stand level, had the consequence to lower, even to eliminate differences in annual ET and gc among ecosystems in their responses to climate drivers. This suggests that the nature of ET regulation at individual and ecosystem levels could be different, which should be taken into account when predicting the effects of changes in land use on regional hydrology. © 2015 Elsevier B.V. Fil:Cristiano, P.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Campanello, P.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bucci, S.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rodriguez, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Scholz, F.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Madanes, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Goldstein, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681923_v203_n_p96_Cristiano http://hdl.handle.net/20.500.12110/paper_01681923_v203_n_p96_Cristiano