Equational Classes of Totally Ordered Modal Lattices
A modal lattice is a bounded distributive lattice endowed with a unary operator which preserves the join-operation and the smallest element. In this paper we consider the variety CH of modal lattices that is generated by the totally ordered modal lattices and we characterize the lattice of subvariet...
Guardado en:
| Publicado: |
1999
|
|---|---|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01678094_v16_n1_p1_Petrovich http://hdl.handle.net/20.500.12110/paper_01678094_v16_n1_p1_Petrovich |
| Aporte de: |
Ejemplares similares
-
Equational Classes of Totally Ordered Modal Lattices
por: Petrovich, A. -
Distributive lattices with an operator
por: Petrovich, A. -
Distributive lattices with an operator
por: Petrovich, Alejandro Gustavo
Publicado: (1996) -
On Priestley Spaces of Lattice-Ordered Algebraic Structures
por: Martínez, N.G., et al. -
On Priestley Spaces of Lattice-Ordered Algebraic Structures
por: Martínez, Néstor Guillermo
Publicado: (1998)