Local overdetermined linear elliptic problems in Lipschitz domains with solutions changing sign
We prove that the only domain Ω such that there exists a solution to the following overdetermined problem Δu+ω2u=-1 in Ω, u=0 on ∂Ω, and ∂nu=c on ∂Ω, is the ball B1, independently on the sign of u, if we assume that the boundary ∂Ω is a perturbation (no necessarily regular) of the unit sphere ∂B1 of...
Guardado en:
Publicado: |
2008
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00494704_v40_n_p1_Canuto http://hdl.handle.net/20.500.12110/paper_00494704_v40_n_p1_Canuto |
Aporte de: |
Ejemplares similares
-
Local overdetermined linear elliptic problems in Lipschitz domains with solutions changing sign
por: Canuto, B., et al. -
Some remarks on solutions to an overdetermined elliptic problem in divergence form in a ball
por: Canuto, Bruno, et al.
Publicado: (2007) -
Some remarks on solutions to an overdetermined elliptic problem in divergence form in a ball
por: Canuto, B., et al. -
A local symmetry result for linear elliptic problems with solutions changing sign
por: Canuto, Bruno
Publicado: (2011) -
A local symmetry result for linear elliptic problems with solutions changing sign
por: Canuto, B.
Publicado: (2011)