Canonical sphere bundles of the Grassmann manifold
For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)∈P(H)×H:Pf=f,‖f‖=1}.We establish the smooth action on R of the group of unitary operators of H, and it thereby...
Guardado en:
Publicado: |
2019
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00465755_v_n_p_Andruchow http://hdl.handle.net/20.500.12110/paper_00465755_v_n_p_Andruchow |
Aporte de: |
Ejemplares similares
-
Canonical sphere bundles of the Grassmann manifold
por: Andruchow, E., et al. -
Canonical sphere bundles of the Grassmann manifold
por: Andruchow, Esteban, et al.
Publicado: (2024) -
Some relationships between the geometry of the tangent bundle and the geometry of the riemannian base manifold
por: Henry, Guillermo Sebastián, et al.
Publicado: (2012) -
Some relationships between the geometry of the tangent bundle and the geometry of the riemannian base manifold
por: Henry, G., et al. -
Homogeneous manifolds from noncommutative measure spaces
por: Andruchow, Esteban, et al.
Publicado: (2010)