Numerical approximations for a nonlocal evolution equation
In this paper we study numerical approximations of continuous solutions to the nonlocal p-Laplacian type diffusion equation, ut(t, x) = ∫Ω J(x - y)|u(t, y) - u(t, x)|p-2(u(t, y) - u(t, x)) dy. First, we find that a semidiscretization in space of this problem gives rise to an ODE system whose solutio...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v49_n5_p2103_PerezLlanos http://hdl.handle.net/20.500.12110/paper_00361429_v49_n5_p2103_PerezLlanos |
Aporte de: |
Ejemplares similares
-
Numerical approximations for a nonlocal evolution equation
por: Pérez-Llanos, M., et al. -
A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
por: Rossi, Julio Daniel
Publicado: (2009) -
A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions
por: Andreu, F., et al. -
Asymptotic behavior for nonlocal diffusion equations
por: Rossi, Julio Daniel
Publicado: (2006) -
Asymptotic behavior for nonlocal diffusion equations
por: Chasseigne, E., et al.
Publicado: (2006)