Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
study the large time behavior of solutions to the nonlocal diffusion equation ℓtu = J-u-u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, ζ1 ≤ |x|t.1/2 ≤ ζ2, ζ1, ζ2 > 0, this behavior is given by a multiple of the dipole solution for...
Guardado en:
Autor principal: | Wolanski, Noemi Irene |
---|---|
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v48_n3_p1549_Cortazar http://hdl.handle.net/20.500.12110/paper_00361410_v48_n3_p1549_Cortazar |
Aporte de: |
Ejemplares similares
-
Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
por: Cortazar, C., et al. -
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
por: Wolanski, Noemi Irene
Publicado: (2016) -
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
por: Cortázar, C., et al. -
Asymptotic behavior for a nonlocal diffusion equation on the half line
por: Cortázar, C., et al. -
Asymptotic behavior for a nonlocal diffusion equation on the half line
Publicado: (2015)