An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games
We characterize solutions to the homogeneous parabolic p-Laplace equation ut = |∇u|2-pΔpu = (p - 2)Δ∞u + Δu in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for thes...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v42_n5_p2058_Manfredi http://hdl.handle.net/20.500.12110/paper_00361410_v42_n5_p2058_Manfredi |
Aporte de: |
Ejemplares similares
-
An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games
por: Manfredi, J.J., et al. -
Maximal operators for the P-laplacian family
por: Pinasco, Juan Pablo, et al.
Publicado: (2017) -
Maximal operators for the P-laplacian family
por: Blanc, P., et al. -
Dynamic Programming Principle for tug-of-war games with noise
por: Rossi, Julio Daniel
Publicado: (2012) -
Dynamic Programming Principle for tug-of-war games with noise
por: Manfredi, J.J., et al.