An optimization problem for the first eigenvalue of the p-fractional Laplacian

In this paper we analyze an eigenvalue problem related to the nonlocal p-Laplace operator plus a potential. After reviewing some elementary properties of the first eigenvalue of these operators (existence, positivity of associated eigenfunctions, simplicity and isolation) we investigate the dependen...

Descripción completa

Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0025584X_v291_n4_p632_DelPezzo
http://hdl.handle.net/20.500.12110/paper_0025584X_v291_n4_p632_DelPezzo
Aporte de:
Descripción
Sumario:In this paper we analyze an eigenvalue problem related to the nonlocal p-Laplace operator plus a potential. After reviewing some elementary properties of the first eigenvalue of these operators (existence, positivity of associated eigenfunctions, simplicity and isolation) we investigate the dependence of the first eigenvalue on the potential function and establish the existence of some optimal potentials in some admissible classes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim