Modeling sulfur dioxide uptake in dent corn during steeping
A mathematical model is employed to describe sulfur dioxide (SO 2) diffusion and reaction during steeping of dent corn. Experiments are performed to measure change of SO2 content of grain during process. A computer-aided nonlinear optimization technique is used to estimate the effective diffusion co...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v38_n4_p393_Haros http://hdl.handle.net/20.500.12110/paper_00236438_v38_n4_p393_Haros |
Aporte de: |
Sumario: | A mathematical model is employed to describe sulfur dioxide (SO 2) diffusion and reaction during steeping of dent corn. Experiments are performed to measure change of SO2 content of grain during process. A computer-aided nonlinear optimization technique is used to estimate the effective diffusion coefficients and rate constants in the temperature range 25-55°C. The effective diffusion coefficient for SO2 varied between 2.27×10-11 and 6.24×10-11 m 2/s and had an Arrhenius activation energy of 24.3 kJ/mol. The reaction rate of SO2 in dent corn followed first-order kinetics, with rate constants in the range of 0.80×10-6-5.38×10 -6 s-1 and activation energy of 49.16 kJ/mol. © 2004 Published by Elsevier Ltd.on behalf of Swiss Society of Food Science and Technology. |
---|