Galois connection between Lipschitz and linear operator ideals and minimal Lipschitz operator ideals
We establish a relation between Lipschitz operator ideals and linear operator ideals, which fits in the framework of Galois connection between lattices. We use this relationship to give a criterion which allows us to recognize when a Banach Lipschitz operator ideal is of composition type or not. Als...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v_n_p_Turco http://hdl.handle.net/20.500.12110/paper_00221236_v_n_p_Turco |
Aporte de: |
Sumario: | We establish a relation between Lipschitz operator ideals and linear operator ideals, which fits in the framework of Galois connection between lattices. We use this relationship to give a criterion which allows us to recognize when a Banach Lipschitz operator ideal is of composition type or not. Also, we introduce the concept of minimal Banach Lipschitz operator ideal, which have analogous properties to minimal Banach operator ideals. We characterize minimal Banach Lipschitz operator ideals which are of composition type and present examples which are not of this class. © 2018 Elsevier Inc. |
---|