Pointed Hopf algebras over the sporadic simple groups

We show that every finite-dimensional complex pointed Hopf algebra with group of group-likes isomorphic to a sporadic group is a group algebra, except for the Fischer group Fi22, the Baby Monster and the Monster. For these three groups, we give a short list of irreducible Yetter-Drinfeld modules who...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andruskiewitsch, Nicolás, Graña, Matías Alejo, Vendramin, Leandro
Publicado: 2011
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v325_n1_p305_Andruskiewitsch
http://hdl.handle.net/20.500.12110/paper_00218693_v325_n1_p305_Andruskiewitsch
Aporte de:
Descripción
Sumario:We show that every finite-dimensional complex pointed Hopf algebra with group of group-likes isomorphic to a sporadic group is a group algebra, except for the Fischer group Fi22, the Baby Monster and the Monster. For these three groups, we give a short list of irreducible Yetter-Drinfeld modules whose Nichols algebra is not known to be finite-dimensional. © 2010 Elsevier Inc.