Braided module and comodule algebras, Galois extensions and elements of trace 1

Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guccione, Jorge Alberto, Guccione, Juan José
Publicado: 2007
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v307_n2_p727_DaRocha
http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
Aporte de:
Descripción
Sumario:Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006.