Unveiling the origin of HESS J1809-193

Aims. The main goal of this paper is to provide new insights on the origin of the observable flux of γ rays from HESS J1809-193 using new high-quality observations in the radio domain. Methods. We used the Expanded Very Large Array (now known as the Karl G. Jansky Very large Array, JVLA) to produce...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v587_n_p_Castelletti
http://hdl.handle.net/20.500.12110/paper_00046361_v587_n_p_Castelletti
Aporte de:
Descripción
Sumario:Aims. The main goal of this paper is to provide new insights on the origin of the observable flux of γ rays from HESS J1809-193 using new high-quality observations in the radio domain. Methods. We used the Expanded Very Large Array (now known as the Karl G. Jansky Very large Array, JVLA) to produce a deep full-synthesis imaging at 1.4 GHz of the vicinity of PSR J1809-1917. These data were used in conjunction with 12CO observations from the James Clerk Maxwell Telescope in the transition line J = 3-2 and atomic hydrogen data from the Southern Galactic Plane Survey to investigate the properties of the interstellar medium in the direction of the source HESS J1809-193. Results. The new radio continuum image, obtained with a synthesized beam of 8′′ × 4′′ and a sensitivity of 0.17 mJy beam-1, reveals with unprecedented detail all the intensity structures in the field. No radio counterpart to the observed X-ray emission supposed to be a pulsar wind nebula powered by PSR J1809-1917 is seen in the new JVLA image. We discovered a system of molecular clouds on the edge of the supernova remnant (SNR) G11.0-0.0 shock front, which is positionally coincident with the brightest part of the TeV source HESS J1809-193. We determine, on the basis of kinematic and morphological evidences, a physical link of the SNR with the clouds for which we estimated a total (molecular plus atomic) mass of ~3 × 103M⊙ and a total proton density in the range 2-3 × 103 cm-3. Conclusions. We propose as the most likely origin of the very high-energy γ-ray radiation from HESS J1809-193 a hadronic mechanism through collisions of ions accelerated at the SNR G11.0-0.0 shock with the molecular matter in the vicinity of the remnant. © 2016 ESO.