Extreme and exposed points of spaces of integral polynomials
We show that if E is a real Banach space such that E′ has the approximation property and such that ℓ1 → ⊗ n,s,e,E, then the set of extreme points of the unit ball of PI (nE) is equal to {± Φn: Φ ∈ E′ ∥ Φ ∥ = 1}. Under the additional assumption that E′ has a countable norming set, we see that the set...
Guardado en:
Autor principal: | Lassalle, Silvia Beatriz |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v138_n4_p1415_Boyd http://hdl.handle.net/20.500.12110/paper_00029939_v138_n4_p1415_Boyd |
Aporte de: |
Ejemplares similares
-
Extreme and exposed points of spaces of integral polynomials
por: Boyd, C., et al. -
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
por: Dimant, Verónica, et al.
Publicado: (2012) -
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
por: Dimant, V., et al. -
Extreme values, regular variation and point processes /
por: Resnick, Sidney I.
Publicado: (2008) -
Factoring bivariate sparse (lacunary) polynomials
por: Avendaño, Martín, et al.
Publicado: (2007)