Classifying smooth lattice polytopes via toric fibrations
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
Guardado en:
| Autor principal: | Dickenstein, Alicia Marcela |
|---|---|
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v222_n1_p240_Dickenstein http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
| Aporte de: |
Ejemplares similares
-
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al.
Publicado: (2009) -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al.
Publicado: (2009) -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al. -
Codimension theorems for complete toric varieties
por: Dickenstein, Alicia Marcela
Publicado: (2005) -
Codimension theorems for complete toric varieties
por: Cox, D., et al.
Publicado: (2005)