Classifying smooth lattice polytopes via toric fibrations
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
Guardado en:
| Autor principal: | |
|---|---|
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v222_n1_p240_Dickenstein http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
| Aporte de: |
| id |
paper:paper_00018708_v222_n1_p240_Dickenstein |
|---|---|
| record_format |
dspace |
| spelling |
paper:paper_00018708_v222_n1_p240_Dickenstein2025-07-30T17:06:03Z Classifying smooth lattice polytopes via toric fibrations Dickenstein, Alicia Marcela Cayley polytope Lattice polytope Nef value Toric fibration Toric variety We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v222_n1_p240_Dickenstein http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety |
| spellingShingle |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety Dickenstein, Alicia Marcela Classifying smooth lattice polytopes via toric fibrations |
| topic_facet |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety |
| description |
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved. |
| author |
Dickenstein, Alicia Marcela |
| author_facet |
Dickenstein, Alicia Marcela |
| author_sort |
Dickenstein, Alicia Marcela |
| title |
Classifying smooth lattice polytopes via toric fibrations |
| title_short |
Classifying smooth lattice polytopes via toric fibrations |
| title_full |
Classifying smooth lattice polytopes via toric fibrations |
| title_fullStr |
Classifying smooth lattice polytopes via toric fibrations |
| title_full_unstemmed |
Classifying smooth lattice polytopes via toric fibrations |
| title_sort |
classifying smooth lattice polytopes via toric fibrations |
| publishDate |
2009 |
| url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v222_n1_p240_Dickenstein http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
| work_keys_str_mv |
AT dickensteinaliciamarcela classifyingsmoothlatticepolytopesviatoricfibrations |
| _version_ |
1840321070203142144 |