Some numerical radius inequality for several semi-Hilbert space operators
Revista con referato
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Taylor and Francis
2025
|
| Materias: | |
| Acceso en línea: | http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2329 |
| Aporte de: |
| id |
I71-R177-UNGS-2329 |
|---|---|
| record_format |
dspace |
| spelling |
I71-R177-UNGS-23292025-07-24T18:00:32Z Some numerical radius inequality for several semi-Hilbert space operators Conde, Cristian Marcelo Feki, Kais Positive Operator A-Adjoint Operator A-Numerical Radius Inequality Matemáticas Matemática Pura Revista con referato Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina. Fil: Feki, Kais. University of Sfax; Túnez. El artículo trata del radio numérico generalizado de operadores lineales que actúan en un espacio de Hilbert complejo (Fórmula presentada.), que están acotados con respecto a la seminorma inducida por un operador positivo A en (Fórmula presentada.). Aquí no se supone que A sea invertible. Principalmente, si denotamos por (Fórmula presentada.) y (Fórmula presentada.) los radios numéricos generalizado y clásico respectivamente, demostramos que para cada operador T acotado por A tenemos (Fórmula presentada.) donde (Fórmula presentada.) es la inversa de Moore-Penrose de (Fórmula presentada.). Además, se establecen varias desigualdades nuevas que involucran (Fórmula presentada.) para uno y varios operadores. En particular, mediante el uso de nuevas técnicas, cubrimos y mejoramos algunos resultados recientes debido a Najafi [Linear Algebra Appl. 2020;588:489–496]. The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space (Formula presented.), which are bounded with respect to the seminorm induced by a positive operator A on (Formula presented.). Here A is not assumed to be invertible. Mainly, if we denote by (Formula presented.) and (Formula presented.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have (Formula presented.) where (Formula presented.) is the Moore-Penrose inverse of (Formula presented.). In addition, several new inequalities involving (Formula presented.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489–496]. 2025-07-24T18:00:32Z 2025-07-24T18:00:32Z 2022 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion Conde, C. M. y Feki, K. (2022). Some numerical radius inequality for several semi-Hilbert space operators. Linear and Multilinear Algebra, 71(6), 1054-1071. 0308-1087 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2329 eng https://doi.org/10.1080/03081087.2022.2050883 info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Taylor and Francis Linear and Multilinear Algebra. 2022; 71(6): 1054-1071 |
| institution |
Universidad Nacional de General Sarmiento |
| institution_str |
I-71 |
| repository_str |
R-177 |
| collection |
Repositorio Institucional Digital de Acceso Abierto (UNGS) |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Positive Operator A-Adjoint Operator A-Numerical Radius Inequality Matemáticas Matemática Pura |
| spellingShingle |
Positive Operator A-Adjoint Operator A-Numerical Radius Inequality Matemáticas Matemática Pura Conde, Cristian Marcelo Feki, Kais Some numerical radius inequality for several semi-Hilbert space operators |
| topic_facet |
Positive Operator A-Adjoint Operator A-Numerical Radius Inequality Matemáticas Matemática Pura |
| description |
Revista con referato |
| format |
Artículo Artículo publishedVersion |
| author |
Conde, Cristian Marcelo Feki, Kais |
| author_facet |
Conde, Cristian Marcelo Feki, Kais |
| author_sort |
Conde, Cristian Marcelo |
| title |
Some numerical radius inequality for several semi-Hilbert space operators |
| title_short |
Some numerical radius inequality for several semi-Hilbert space operators |
| title_full |
Some numerical radius inequality for several semi-Hilbert space operators |
| title_fullStr |
Some numerical radius inequality for several semi-Hilbert space operators |
| title_full_unstemmed |
Some numerical radius inequality for several semi-Hilbert space operators |
| title_sort |
some numerical radius inequality for several semi-hilbert space operators |
| publisher |
Taylor and Francis |
| publishDate |
2025 |
| url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2329 |
| work_keys_str_mv |
AT condecristianmarcelo somenumericalradiusinequalityforseveralsemihilbertspaceoperators AT fekikais somenumericalradiusinequalityforseveralsemihilbertspaceoperators |
| _version_ |
1842217799393476608 |