Supermodular utility representations

Many problems in decision theory and game theory involve choice problems over lattices and invoke the assumption of supermodularity of utility functions. In the context of choice over finite lattices, it is well-known that existence of supermodular representations is equivalent to existence of quasi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Francetich, Alejandro
Otros Autores: Universidad Torcuato Di Tella
Formato: Tesis de maestría acceptedVersion
Lenguaje:Español
Publicado: Universidad Torcuato Di Tella 2017
Materias:
Acceso en línea:http://repositorio.utdt.edu/handle/utdt/1338
Aporte de:
Descripción
Sumario:Many problems in decision theory and game theory involve choice problems over lattices and invoke the assumption of supermodularity of utility functions. In the context of choice over finite lattices, it is well-known that existence of supermodular representations is equivalent to existence of quasisupermodular ones for monotone preferences. In particular, strictly monotone preferences admit a supermodular representation. This paper revisits the axiomatic foundations of supermodularity of utility functions representing preferences over finite lattices, and develops an axiomatic foundation in the context of choice over lotteries over outcomes in arbitrary lattices.