Clasificación de granos de polen con Deep Learning y SVM

A lo largo de la historia, muchos algoritmos fueron utilizados para los problemas de clasificación, entre ellos los SVM, actualmente los autoencoders son el estado del arte, por su facilidad para obtener características del problema mediante el entrenamiento no supervisado en base a ejemplos, tal co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roodschild, Matías, Gotay Sardiñas, Jorge, Will, Adrián
Otros Autores: Congreso Nacional de Ingeniería en Informática / Sistemas de información (4° : 2016 nov. 17-18 : Salta)
Formato: Documento de conferencia
Lenguaje:Español
Publicado: Universidad Católica de Salta. Facultad de Ingeniería (Salta) 2016
Materias:
Acceso en línea:https://bibliotecas.ucasal.edu.ar/opac_css/index.php?lvl=cmspage&pageid=24&id_notice=61391
Aporte de:
Descripción
Sumario:A lo largo de la historia, muchos algoritmos fueron utilizados para los problemas de clasificación, entre ellos los SVM, actualmente los autoencoders son el estado del arte, por su facilidad para obtener características del problema mediante el entrenamiento no supervisado en base a ejemplos, tal como lo haría un ser humano. Entre sus aplicaciones más destacadas, podemos mencionar el reconocimiento de voz, sistemas de seguridad, aplicaciones medicinales, conducción autónoma de vehículos, agricultura de precisión, entre otros. Muchos campos de investigación, poseen una gran variedad de información y presentan determinadas características propias de su naturaleza que dificultan el aprendizaje, entre ellos, podemos mencionar el solapamiento y el desbalance de las clases. En la presente publicación, mostraremos las principales ventajas de incorporar deeplearning con autoencoders a los clasificadores SVM y como mejoran el rendimiento.