Segmentation-Free Estimation of Aortic Diameters from MRI Using Deep Learning
Accurate and reproducible measurements of the aortic diameters are crucial for the diagnosis of cardiovascular diseases and for therapeutic decision making. Currently, these measurements are manually performed by healthcare professionals, being time consuming, highly variable, and suffering from lac...
Guardado en:
| Autores principales: | Aguerreberry, Axel, de la Rosa, Ezequiel, Lalande, Alain, Fernández, Elmer Andrés |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Español |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://pa.bibdigital.ucc.edu.ar/3330/1/DC_Agueberry_de%20la%20Rosa_Lalande.pdf |
| Aporte de: |
Ejemplares similares
-
Galaxy segmentation using U-Net deep-learning algorithm
por: Rey Deutsch, Tomás, et al.
Publicado: (2023) -
Deep R programming
por: Gągolewski, Marek
Publicado: (2024) -
Volumetric Segmentation of Pelvic Organs from MRI Acquisitions
por: Namías, Rafael, et al.
Publicado: (2012) -
Cellular outline segmentation using fractal estimators
por: Salvatelli, Adrián, et al.
Publicado: (2007) -
Comparison of standard and artificial neural network estimators of hemodialysis adequacy
por: Fernández, Elmer Andrés, et al.
Publicado: (2005)