Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals
Abstract: Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper...
Guardado en:
| Autores principales: | Quintero-Rincón, Antonio, Muro, Valeria, D’Giano, Carlos, Prendes, Jorge, Batatia, Hadj |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2020
|
| Materias: | |
| Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/10947 |
| Aporte de: |
Ejemplares similares
-
A new algorithm for automatic identification of spike-wave EEG signals in epileptic patient-specific
por: Racca, Dora María, et al.
Publicado: (2019) -
Fast statistical model-based classification of epileptic EEG signals
por: Quintero-Rincón, Antonio, et al.
Publicado: (2019) -
Spike-and-wave detection in epileptic signals using cross-correlation and decision trees
por: Quintero-Rincón, Antonio, et al.
Publicado: (2020) -
Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression
por: Quintero-Rincón, Antonio, et al.
Publicado: (2020) -
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier
por: Quintero-Rincón, Antonio, et al.
Publicado: (2019)