Diagnóstico de cáncer de mama usando el tamaño del efecto d de Cohen como selector de características
El cancer de mama es un tumor maligno que comienza a desarrollarse dentro de los conductos galatóforos o de los lobulillos que producen leche del seno, lo que resulta mortal si no se recibe tratamiento a tiempo. En consonancia con la Organización Mundial de la Salud (OMS), en el añoo 2020 se diagno...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Español |
| Publicado: |
Iberamia
2025
|
| Materias: | |
| Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/19868 |
| Aporte de: |
| Sumario: | El cancer de mama es un tumor maligno que comienza a desarrollarse dentro de los conductos galatóforos o de los lobulillos que producen leche del seno, lo que resulta mortal si no se recibe tratamiento a tiempo.
En consonancia con la Organización Mundial de la Salud (OMS), en el añoo 2020 se diagnosticaron cerca de 2,3 millones de mujeres con cáncer mamario. Asimismo, el tumor puede afectar a cualquier individuo indiscriminadamente, aunque la tasa suele ser mayor en sujetos femeninos mayores de 50 años. Con este escenario mundial resulta imprescindible contar con estrategias de detecci´on temprana de cáncer de mama. Bajo dicho lema, se propone usar el tamañoo del efecto d de Cohen como selector de caracter´ısticas para ser aplicado en un modelo de clasificación de Machine Learning (ML). El objetivo es reducir la dimensionalidad de los datos y así optimizar los predictores para diagnosticar el cáncer de mama. d de Cohen mide la fuerza de la relación entre dos poblaciones en una escala num´erica. Este selector propuesto se compara con dos métodos clásicos: cuantificación de vectores
de aprendizaje (LVQ: Learning Vector Quantization) y eliminación recursiva de características (RFE: Recursive Feature Elimination). Para fines de experimentación se trabajo con las base de datos Breast Cancer Wisconsin. La evaluación aleatoria de las características de cada selector, se realizó 100 veces a través de un clasificador de máquina de vectores de soporte (SVM: Support Vector Machine), obteniéndose en promedio, los siguientes resultados: una sensibilidad de 0.91 y una especificidad de 0.96 para el modelo basado en LVQ, una sensibilidad
de 0.96 y una especificidad de 0.97 empleando el método propuesto d de Cohen, contra una sensibilidad de 0.95 y una especificidad de 0.98 utilizando RFE. Estos resultados prometedores sugieren que la metodología propuesta es potencialmente útil como selector de características y abren una luz en la larga investigación en la detección de cáncer de mama. |
|---|