EEG waveform identification based on deep learning techniques
"The use of Brain-Computer Interfaces can provide substantial improvements to the quality of life of patients with diseases such as severe Amyotrophic lateral sclerosis that cause Locked-in syndrome, by creating new avenues in which these people can communicate and interact with the outside wor...
Guardado en:
| Autor principal: | Ail, Brian Ezequiel |
|---|---|
| Otros Autores: | Ramele, Rodrigo |
| Formato: | Proyecto final de Grado |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/3815 |
| Aporte de: |
Ejemplares similares
-
EEG waveform analysis of P300 ERP with applications to brain computer interfaces
por: Ramele, Rodrigo, et al.
Publicado: (2019) -
Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals
por: Quintero Rincón, Antonio, et al.
Publicado: (2023) -
Histogram of gradient orientations of EEG signal plots for brain computer interfaces
por: Ramele, Rodrigo
Publicado: (2018) -
Conceptos básicos sobre EEG : con mini-atlas
por: Rowan, A. James
Publicado: (2004) -
Expanding Semantic BCI for Low-Density EEG via Deep Learning
por: Langone, Mila, et al.
Publicado: (2025)