Análisis de clasificadores bayesianos
"Una red bayesiana es un grafo acíclico dirigido en el que cada nodo representa una variable y cada arco una dependencia probabilística, son utilizadas para proveer: una forma compacta de representar el conocimiento, y métodos flexibles de razonamiento. El obtener una red, bayesiana a partir de...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Trabajo final de especialización |
| Lenguaje: | Español |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/2531 |
| Aporte de: |
| Sumario: | "Una red bayesiana es un grafo acíclico dirigido en el que cada nodo representa una variable y cada arco una dependencia probabilística, son utilizadas para proveer: una forma compacta de representar el conocimiento, y métodos flexibles de razonamiento. El obtener una red, bayesiana a partir de datos, es un proceso de aprendizaje que se divide en dos etapas: el aprendizaje estructural y el aprendizaje paramétrico.
En este trabajo se describirá el funcionamiento de tres algoritmos de Clasificadores, Naïve Bayes, TAN y KDB. Se mostrará además como, a través del programa lvira,
se puede llegar a obtener una red Bayesiana con estos clasificadores. Dicha red variará dependiendo del algoritmo clasificador aplicado, y de la combinación de este con algún algoritmo de inducción de árboles de decisión. Por último se mostrará una comparación que permita analizar las diferencias entre los distintos clasificadores y la influencia que en ellos genera los algoritmos generadores de árboles de decisión." |
|---|