Simulating competitive egress of noncircular pedestrians

"We present a numerical framework to simulate pedestrian dynamics in highly competitive conditions by means of a force-based model implemented with spherocylindrical particles instead of the traditional, symmetric disks. This modification of the individuals’ shape allows one to naturally reprod...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cruz Hidalgo, R., Parisi, Daniel, Zuriguel, Iker
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1720
Aporte de:
Descripción
Sumario:"We present a numerical framework to simulate pedestrian dynamics in highly competitive conditions by means of a force-based model implemented with spherocylindrical particles instead of the traditional, symmetric disks. This modification of the individuals’ shape allows one to naturally reproduce recent experimental findings of room evacuations through narrow doors in situations where the contact pressure among the pedestrians was rather large. In particular, we obtain a power-law tail distribution of the time lapses between the passage of consecutive individuals. In addition, we show that this improvement leads to new features where the particles’ rotation acquires great significance."