Performing OLAP over graph data: query language, implementation, and a case study

"In current Big Data scenarios, traditional data warehousing and Online Analytical Processing (OLAP) operations on cubes are clearly not sufficient to address the current data analysis requirements. Nevertheless, OLAP operations and models can expand the possibilities of graph analysis beyond t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gómez, Leticia Irene, Kuijpers, Bart, Vaisman, Alejandro Ariel
Formato: Ponencias en Congresos acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1717
Aporte de:
Descripción
Sumario:"In current Big Data scenarios, traditional data warehousing and Online Analytical Processing (OLAP) operations on cubes are clearly not sufficient to address the current data analysis requirements. Nevertheless, OLAP operations and models can expand the possibilities of graph analysis beyond the traditional graph-based computation. In spite of this, there is not much work on the problem of taking OLAP analysis to the graph data model. In previous work we proposed a multidimensional (MD) data model for graph analysis, that considers not only the basic graph data, but background information in the form of dimension hierarchies as well. The graphs in our model are node- and edge-labelled directed multi-hypergraphs, called graphoids, defined at several different levels of granularity. In this paper we show how we implemented this proposal over the widely used Neo4J graph database, discuss implementation issues, and present a detailed case study to show how OLAP operations can be used on graphs."