Anti-stokes Raman gain enabled by modulation instability in mid-IR waveguides
"The inclusion of self-steepening in the linear stability analysis of modulation instability (MI) leads to a power cutoff above which the MI gain vanishes. Under these conditions, MI in mid-IR waveguides is shown to give rise to the usual double-sideband spectrum but with Raman-shaped sidelobes...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1701 |
| Aporte de: |
| Sumario: | "The inclusion of self-steepening in the linear stability analysis of modulation instability (MI) leads to a power cutoff above which the MI gain vanishes. Under these conditions, MI in mid-IR waveguides is shown to give rise to the usual double-sideband spectrum but with Raman-shaped sidelobes. This
results from the energy transfer of a CW laser simultaneously to both stokes and anti-stokes bands in pseudo-parametric fashion. As such, the anti-stokes gain matches completely the stokes profile over the entire gain bandwidth. This remarkable behavior, not expected from an unexcited medium, is shown not
to follow from a conventional four-wave mixing interaction between the pump and the Stokes band. We believe this observation to be of relevance in the area of Raman-based sensors, which, in several instances, rely on monitoring small power variations of the anti-stokes spectral component." |
|---|