Fast statistical model-based classification of epileptic EEG signals
"This paper presents a supervised classification method to accurately detect epileptic brain activity in real-time from electroencephalography (EEG) data. The proposed method has three main strengths: it has low computational cost, making it suitable for real-time implementation in EEG devices;...
Guardado en:
| Autores principales: | Quintero-Rincón, Antonio, Pereyra, Marcelo, D'Giano, Carlos, Risk, Marcelo, Batatia, Hadj |
|---|---|
| Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1633 |
| Aporte de: |
Ejemplares similares
-
Statistical modeling and quantification of EEG signals: application to the characterization and onset detection in epileptic seizures
por: Quintero-Rincón, Antonio
Publicado: (2019) -
Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression
por: Quintero-Rincón, Antonio, et al.
Publicado: (2020) -
A new algorithm for automatic identification of spike-wave EEG signals in epileptic patient-specific
por: Racca, Dora María, et al.
Publicado: (2019) -
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence
por: Quintero-Rincón, Antonio, et al.
Publicado: (2019) -
Spike-and-wave detection in epileptic signals using cross-correlation and decision trees
por: Quintero-Rincón, Antonio, et al.
Publicado: (2020)