Prediction in health domain using Bayesian networks optimization based on induction learning techniques

"A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and exible methods of reasoning. Obtaining it from data is a learning process that is divided in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Felgaer, Pablo, Britos, Paola Verónica, García Martínez, Ramón
Formato: Ponencias en Congresos acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1432
Aporte de:
Descripción
Sumario:"A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and exible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain."