When the optimal is not the best: Parameter estimation in complex biological models
Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model de...
Guardado en:
Autores principales: | Fernández Slezak, D., Suárez, C., Cecchi, G.A., Marshall, G., Stolovitzky, G. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_19326203_v5_n10_p_FernandezSlezak https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_19326203_v5_n10_p_FernandezSlezak_oai |
Aporte de: |
Ejemplares similares
-
When the optimal is not the best: Parameter estimation in complex biological models
por: Fernández Slezak, D., et al.
Publicado: (2010) -
When the optimal is not the best: Parameter estimation in complex biological models
por: Fernández Slezak, D., et al. -
When the optimal is not the best: Parameter estimation in complex biological models
por: Fernández Slezak, Diego, et al.
Publicado: (2010) -
Optimization for communications and networks /
por: Saengudomlert, Poompat
Publicado: (2011) -
Advanced stochastic models, risk assessment, and portfolio optimization : the ideal risk, uncertainty, and performance measures /
por: Rachev, S. T. (Svetlozar Todorov)
Publicado: (2008)